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Objective

= The %oal of this project 1s to design a two inline-wheel bike simulation
capable of balancing itself using a reaction wheel.

» The simulation for this presentation 1s of an inverted pendulum which
uses a control system to keep itself upright.

= The system 1s able to take into account external variations and using
its feedback can change its state accordingly, 1.e. in order to maintain
the balance, the robot reads sensor input to getect tilt angle and
correctly reacts to maintain gyroscope for steady vertical position.
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Overview

= The first step in this project is to analyse the system and figure out the
factors that affect the system. Once we 1dentify the variables, we can
create a mathematical model for the system.

= The next step 1s to linearly transform the system to eigenvalue
coordinates by using diagonalization.

» By studying the effect of the eigenvalues on the stability of the system,
we can design a controller for the same.



The Inverted Pendulum Reaction Wheel System




1 State Space Analysis

1. Select States of System

0 Angle between pendulum and vertical - . .
i ) B Kiigulas velociyof pandilrs Considering P is orthogonal Matrix
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Now,

Converting back to original state since it is important to preserve our re-
quired system state variables.

Thus, Using Power of Matrix Theorem in equation (1),

P~1.D2. pt?
gt — PPy PY o Pl = L.
D?t2 D343
- e = PlI+ D+ = 3- = -4

eAt _ P—l . BDt . P

| X@) =P Le”*« P: X(0) (2)




Studying the Effect of Eigenvalues on Stability of System
From equation (2), we can infer that X(t) will be some linear combination

Effect of

E . 1 Now,
igenvalues
SA=a+ib
. eM — o (oos(bt) L i.sin(bt))
et = e (cos(bt) + i.sin(bt))
velocity alweys 1
) ifa>0 ifa<0
10 y
\ I' 05
f |
1‘ ', t' I
| M | |
| | |
\ ' \ |
\ N W |
| T
| | | |
-5 ' \ | | 05
| |
v )
%% 10 15 20 25 30 35 4 _
System oscillations increase overtime so

System oscillations grow overtime so unstable.
reaches stability.

However, this modelling only works if the system is linear. But in most
(=] . o
practical applications, the systems are non-linear. So, in order to linearize

them we make use of Jacobians.

Negative Real Part corresponding to damping of
system which results in Stability



Linearize around a fixed point.

(a) Find the stable equilibrium points for the system.

tendency to
equilibrium unable to return

S equilibrium at
to equilibrium

any point of
i displacement

L ° ° k S * +
Llne arlzlllg equilibrium -c."'ql-fihlbrium —'—‘—'—
: : Stems {a) stable equilibrium (b) unstable equilibrium (¢) neutral equilibrium
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For our inverted pendulum system, the equilibrium are at:
uS lng =7 and =0

Y

arc of swing



This is the Taylor-Series expansion around X
where, ———' is the Jacobian of X = f(X)atX

Linearizing Systems

81 8f1
K Srl dxr2
using 2 - [ il atX
Jacobian ol o

Taking only the linear component of this expansion,

. _ Df )
X= X - X
(b) Linearize around these equilibrium points: X=A-X
1.e Non-Linear system acts linear when we look rally close to equilib-
rium points. S
i | $fr 41
Let X => Equilibrium point oxl" :ox2
3 ‘4 pass . . . . th
For Non-Linear System, . A
8fn Sfn
drl : B ]

X = f(z)
where f(x) is a non-linear combination of state variables.
Around Equilibrium point,

Thus, we come to realize that for a Non-Linear system, the matrix
which defines our state space model linearly is basically just the Ja-
cobian of the system taken at the equilibrium point.

Df . D*f -

X =f(X)+ Dzl



Modelling a Physical System

L(q,q) = KE(q,q) — PE(q,q) ........ (Lagrangian Operator)
L = %(mlLf + mng + I + ]3)03 + 00 + %]29.2

—(my Ly + moLo) g cost
14

d (0L oL . o
=B 2 =5 ¢ U
dt \ 9g; 94 (Lagrangian Equation for Dynamic Model)

(m.lL"l2 — mgL% + 1+ 12)65 + I-zg'fp' — (my1Ly +maLs)gsind =0




State Space Equation

The equation 1s a nonlinear mathematical model expression of the inverted pendulum system with a
reaction wheel. In order to simplify analysis we linearize the equation about the unstable equilibrium
when is © very small, according to Jacobian linearization, we obtain:

— — -

91 [ 0o 1 0 0] [6 0

v, b / a O 0 0O 7, —1 / a where a = m1L? + moL3 + I
1 = |+ T, | |
(e 0 o O | O b= (miLi+maLs)g

6] —bfa 0 0 0Of (& (a+ I2)/(al2))

The above equation is of the form

= Ax(t) + Bul(t)
where, A — State Matrix B — Input Matrix



Controllability

Now that we have out System Modelled, we can work towards making a con-
troller for the same.

X=A-X+B-u (3)

where,
X e R";

A e R,
B € R"*4;
u € R;

Controllability Matrix C

C=|B AB A*B . : : A" B|

For system to be controllable,

rank(C) =n




LQR Controller

X =Ax+ Bu

Y
)Q y=Cx+ Du

i.e. U=-K.X
X=(A —B.K).X



Pole Placement

= One method to ensure that the system i1s stable 1s to select the gain matrix K in

such a way so that the eigenvalues of the (A-BK) matrix are purely real and
negative.

= We can select the desired eigenvalues for the system and calculate the K matrix
such that (A-BK) has our desired eigenvalues.

’ 0 10 0] [ 0 ]
bfa 0 0 0 —1/a . . . .
/ / 9 .
A-BK = 0 00 1 _ 0 » (A1 K2 K3 K 4]
L—b;"a 0 0 ()J L((l +12)/(ax 1 Z)J
0 | 0 0
A-BK = (b+ Kl)/a K2/a K3/a K4/a
0 0 0 |
L—b;”u —((a+12)« K1)/(ax I2) —((a+12)x K2)/(ax12) —((a+12)x K3)/(ax12) —((a+ 12)* K4)/(a * IZ)J



* Now,

A-BK-AI = ’ .\ 1 0 0 ]
(b+ K1)/a K2/a — A K3/a K4/a
0 0 —A |
L—b;‘”u —((a+12)« K1)/(ax I12) —((a+12)%x K2)/(a*x12) —((a+12)%x K3)/(ax12) —((a+12)* K4)/(a*12)— /\J

 Here values of A are the eigen values.
* Now, we put det(A-BK-AI) = 0 and form a equation.
* Select arbitrary values of A as roots of the equation.

* Substitute the values of A 1n the equation obtained and find the values of K1, K2, K3,
K4 to form the K matrix.

* Note that while selecting values of A, 1t’s real part must be negative for it to be stable
and positive for it to be unstable.

* The K matrix for our system turns out be:

K = [—1.225643 —0.051416 0.850230 l.()QQISS]



LQR

= Linear Quadratic Regulator(LQR) helps us optimize the K matrix according to our
desired response.

= Here we use a cost function,

] = joo(xTQx + u’Ru)
0

= Where, Q and R are positive semi-definite diagonal matrices and x and u are the state
vector and input vector respectively.

= The controller is of the form u# = -Kx which is a Linear controller and the underlying
cost function 1s Quadratic in nature and hence the name Linear Quadratic Regulator.



LQR

= Each Q1 are the weights for the respective states xi.

= The trick 1s to choose weights Q1 for each state x1 so that the desired performance
criteria 1s achieved. Greater the state objective is, greater will be the value of Q
corresponding to the said state variable.

= LQR minimizes this cost function J based on the chosen matrices Q and R.



The End

Thank You!



