Aryaman Shardul

Boston, MA | Inu.arya@northeastern.edu | +1 (617) 595-2440 | LinkedIn | GitHub | Personal Website

EDUCATION

Northeastern University, Boston, MA

Master's in Robotics (ECE Concentration), GPA 3.92

Relevant Courses: Robotics Sensing & Navigation, Robot Mechanics & Control, Mobile Robotics, Control Systems

Veermata Jijabai Technological Institute, Mumbai, India

May 2024

Dec 2026

Bachelor of Technology in Computer Engineering, GPA 8.14/10

Relevant Courses: Machine Learning, Data Structures and Algorithms, C++, Python, Internet of Things (IOT)

TECHNICAL SKILLS

Programming Languages: C, C++, Python, Lua, Octave **Web Developer Tools**: HTML, CSS, JavaScript

Software/Frameworks: Linux, Git/GitHub, ROS, ROS 2, Gazebo, Rviz, CoppeliaSim, MATLAB, CasADi, Simulink,

Arduino IDE, Raspberry Pi, TensorFlow, PyTorch OpenCV, NumPy, GTSAM, Open3D

WORK EXPERIENCE

Silicon Synapse Lab, Northeastern University, Boston, MA

Feb 2025 - Present

Graduate Research Assistant

 Developing a control strategy to enable tumbling locomotion for the Cobra robot by modulating its elliptical posture during movement by using Model Predictive Control (MPC) and analyzing Impact Mitigation Factor (IMF)

Multi-Robot Autonomy Lab, IISER Bhopal, Remote

Jan 2023 - March 2024

Robotics Research Intern

- Designed a Model Predictive Controller (MPC)-based UAV path-planning algorithm using MATLAB and CasADi to account for the dynamic wind field present around the UAV
- Created a neural network using Computational Fluid Dynamics and DeepXDE to simulate the rapidly changing wind patterns, demonstrating the use of deep learning for environmental modeling in robot autonomy
- Integrated obstacle avoidance constraints, ensuring control and navigation in complex environments

Embedded Real-Time Systems Lab, IIT Bombay, Mumbai, India

June 2022 - July 2022

Summer Research Intern

- Developed "Prota: The ROS Bot," an autonomous ground vehicle, integrating LiDAR, IMU, optical encoders, depth camera, and proximity sensors for multi-sensor fusion and navigation in a GPS-denied environment
- Calibrated and synchronized sensor data streams to enable reliable localization and mapping, and performed realtime SLAM using ROS packages and Python, both in Gazebo simulation and on physical hardware
- Built the robotics software stack for motion planning and perception, gaining hands-on experience with the robotics middleware ecosystem, including ROS topics, services, and parameter tuning

PROJECTS

Branch-and-Bound for 3D Global Localization

March 2025 - April 2025

Recreating a simplified version of the <u>3D-BBS algorithm</u> from ICRA 2024 for 3D perception and global robot localization in autonomous driving SLAM pipelines, overcoming limitations of methods based on ICP that require accurate initial guesses

- Implemented hierarchical Branch-and-Bound (BnB) search in C++ for 4-DOF pose recovery (x, y, z, yaw) using voxel hash maps and candidate pruning, leveraging 3D LiDAR scan matching with the BnB search algorithm
- Evaluated alignment performance on KITTI Sequence 00, achieving less than 5m ATE and less than 1-degree AOE across fake initializations and perturbed inputs
- Emulated GPU-based methods on CPU-only setup, revealing key trade-offs in voxel resolution, scoring heuristics, and search expansion, and visualized scan-to-map alignment using Python and Open3D

Pick and Place Using a Robot Manipulator

Nov 2024 - Dec 2024

Designed a motion planning solution for a pick and place task using a 4-DOF PincherX100 robot arm, coding in MATLAB

- Employed Forward Kinematics and Numerical Inverse Kinematics to calculate the end-effector's position and to determine the joint configurations needed to achieve a desired end-effector pose, respectively
- Designed a Trajectory Planner using linear interpolation for a smooth and time-optimal trajectory
- Implemented obstacle avoidance for the arm to generate a collision-free trajectory in the presence of an obstacle

Sensor Fusion Of GPS And IMU Data

Oct 2024

Collected GPS and IMU data using the NUANCE autonomous car to perform automotive dead reckoning

- Developed custom ROS 2 messages, nodes, and drivers with custom parameters for GPS and IMU sensors using Python, integrating them into a unified driver for synchronized multimodal sensor fusion and integration
- Analyzed the IMU's noise characteristics using Allan Variance and calibrated the magnetometer by correcting hard and soft iron distortions, alongside error compensation for both IMU and GPS data
- Designed a sensor fusion pipeline using complementary filters to estimate yaw and forward velocity for dead reckoning, improving understanding of sensor calibration and SLAM in GPS-degraded conditions